Aromatic Hydrocarbons

Chapter 1.3

Here's the story so far...

Aromatic Hydrocarbons

- An **aromatic hydrocarbon** is an unsaturated cyclic hydrocarbon with a pattern of bonding that makes it chemically stable
- Benzene is the simplest aromatic hydrocarbon
- Benxene is often depicted as a 6-carbon ring with alternating single and double bonds, however measurements of bond length indicate that all six bonds are equal and that bonding electrons are shared equally between the six carbons

Figure 2 (a) The structure of benzene, a planar ring system in which all bond angles are 120° (b) Two structural formulas implying that the structure of benzene is a combination of them both together (c) The common representation of benzene

Naming Aromatic Hydrocarbons

- There are two conventions for naming aromatic hydrocarbons:
- 1) Naming benzene as the parent molecule
- 2) Naming benzene as a substituent group

Naming Aromatic Hydrocarbons 1) Naming benzene as the parent molecule

- use the suffix *__benzene*
- example

- If there are multiple branches, number the carbon atoms of the benzene ring so that the branches have the lowest numbers possible
- example

Naming Aromatic Hydrocarbons 2) Naming benzene as a substituent group

- Use the name *phenyl* to indicate a benzene branch
- Examples

Old School Naming System

 Sometimes you will see the greek prefixes ortho-, meta-, and para- used to represent the 1,2 position, 1,3 position, and 1,4 positions on the benzene ring respectively

Properties of Aromatic Hydrocarbons

- Some are liquids at room temperature while others are crystalline solids
- Most are non-polar because of the symmetrical shape
- Insoluble in water
- Volatile
- Carcinogenic

Reactions of Aromatic Compounds

So far we know this about halogenation:

Alkanes react with halogens in a substitution reaction:

How will aromatic compounds react with halogens?

Reactions of Aromatic Compounds

Aromatics also undergo **substitution** reactions with nitric acid

Reactions of Aromatic Compounds

 Aromatics undergo substitution reactions with alkyl halides as well

HOMEWORK

Required Reading:

p. 28-31

Questions:

p. 30 #1-2

p. 31 #1-6

1858: Kekulé, moments before his inspirational insight into the structure of benzene.

