13. In each case, divide the mass by the molar mass $\left(n=\frac{m}{M}\right)$.
(a) $n=\frac{0.453 \mathrm{~g}}{159.7 \mathrm{~g} / \mathrm{mol}}=(2.84)\left(10^{-3}\right) \mathrm{mol}$
(b) $n=\frac{50.7 \mathrm{~g}}{98.09 \mathrm{~g} / \mathrm{mol}}=0.517 \mathrm{~mol}$
(c) $n=\frac{(1.24)\left(10^{-2}\right) \mathrm{g}}{152.00 \mathrm{~g} / \mathrm{mol}}=(8.15)\left(10^{-5}\right) \mathrm{mol}$
14. In each case, divide by the Avogadro constant $\left(n=\frac{N}{N_{\mathrm{A}}}\right)$.
(a) $n=\frac{(4.27)\left(10^{21}\right)}{(6.02)\left(10^{23}\right) \mathrm{mol}^{-1}}=(7.09)\left(10^{-3}\right) \mathrm{mol}$
(b) $n=\frac{(7.39)\left(10^{23}\right)}{(6.02)\left(10^{-3}\right) \mathrm{mol}^{-1}}=1.23 \mathrm{~mol}$
(c) $n=\frac{(5.38)\left(10^{22}\right)}{(602)\left(10^{23}\right) \mathrm{mn}^{-1}}=(8.94)\left(10^{-2}\right) \mathrm{mol}$
15.

Isotope	Molar Mass $(\mathrm{g} / \mathrm{mol})$	Sample Mass (g)	Number of Molecules	Number of Moles of Molecules	Number of Moles of Atoms
NaCl	58.44	58.44	$(6.02)\left(10^{23}\right)$	1.00	2.00
NH_{3}	17.04	24.8	$(8.79)\left(10^{23}\right)$	1.46	5.84
$\mathrm{H}_{2} \mathrm{O}$	18.02	1.58	$(5.28)\left(10^{22}\right)$	$(8.77)\left(10^{-2}\right)$	$(2.63)\left(10^{-1}\right)$

16. (a) $\operatorname{PtBr}_{2}: M=195.08 \mathrm{~g} / \mathrm{mol}+2(79.90) \mathrm{g} / \mathrm{mol}=354.88 \mathrm{~g} / \mathrm{mol}$
(b) $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2} \mathrm{H}$:

$$
\begin{aligned}
M & =3(12.01) \mathrm{g} / \mathrm{mol}+5(1.01) \mathrm{g} / \mathrm{mol}+2(16.00) \mathrm{g} / \mathrm{mol}+1.01 \mathrm{~g} / \mathrm{mol} \\
& =74.09 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

18. $\mathrm{C}_{6} \mathrm{H}_{6}: M=78.12 \mathrm{~g} / \mathrm{mol}$ and given $m=45.6 \mathrm{~g}$ $n=\frac{m}{M}=\frac{45.6 \mathrm{~g}}{78.12 \mathrm{~g} / \mathrm{mol}}=0.584 \mathrm{~mol}$
Using $n=\frac{N}{N_{\mathrm{A}}}$, the number of molecules is

Chapter 6 Answers

14. Consider a 100 g sample.

Element	$\boldsymbol{n}=\frac{\boldsymbol{m}}{\boldsymbol{m}}$ (mol)	Ratio to Smallest \boldsymbol{n}	Revised Ratio
C	$\frac{80.2}{12.01}=6.677$	10.498	21
0	$\frac{10.18}{16.00}=0.636$	1.00	2
H	$\frac{9.62}{1.01}=9.524$	14.975	30

The empirical formula is $\mathrm{C}_{21} \mathrm{O}_{2} \mathrm{H}_{30}$.
15. Consider a 100 g sample.

Element	$\boldsymbol{n}=\frac{\boldsymbol{m}}{\boldsymbol{M}}$ (mol)	Ratio to Smallest \boldsymbol{n}	Revised Ratio
Na	$\frac{17.6}{22.99}=0.766$	1.00	2
Cr	$\frac{39.7}{52.00}=0.763$	1.00	2
0	$\frac{42.8}{16.00}=2.675$	3.50	7

The empirical formula is $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
21. Mass of $\mathrm{FeSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}=2.78 \mathrm{~g}$

Mass of $\mathrm{FeSO}_{4}=1.52 \mathrm{~g}$
Mass of $\mathrm{H}_{2} \mathrm{O}$ in sample $=2.78 \mathrm{~g}-1.52 \mathrm{~g}=1.26 \mathrm{~g}$
Moles of $\mathrm{FeSO}_{4}=\frac{1.52 \mathrm{~g}}{151.92 \mathrm{~g} / \mathrm{mol}}$ $=0.01 \mathrm{~mol} \mathrm{FeSO}_{4}$

Moles of $\mathrm{H}_{2} \mathrm{O}=\frac{1.26 \mathrm{~g}}{18.02 \mathrm{~g} / \mathrm{mol}}$

$$
=0.07 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Divide moles of iron sulfate and water by 0.01 mol , this gives the ratio $1 \mathrm{~mol} \mathrm{FeSO}_{4}: 7 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Therefore, $x=7$ and the formula for the compound is $\mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

