Chapter 5 Answers

13. In each case, divide the mass by the molar mass $\left(n = \frac{m}{M}\right)$. **(a)** $n = \frac{0.453 \text{ g}}{159.7 \text{ g/mol}} = (2.84)(10^{-3}) \text{ mol}$ **(b)** $n = \frac{50.7 \text{ g}}{98.09 \text{ g/mol}} = 0.517 \text{ mol}$ **(c)** $n = \frac{(1.24)(10^{-2}) \text{ g}}{152.00 \text{ g/mol}} = (8.15)(10^{-5}) \text{ mol}$

14. In each case, divide by the Avogadro constant $\left(n = \frac{N}{N_{\rm A}}\right)$. (a) $n = \frac{(4.27)(10^{21})}{(6.02)(10^{23}) \text{mol}^{-1}} = (7.09)(10^{-3}) \text{ mol}$ (b) $n = \frac{(7.39)(10^{23})}{(6.02)(10^{23}) \text{mol}^{-1}} = 1.23 \text{ mol}$ (c) $n = \frac{(5.38)(10^{22})}{(6.02)(10^{23}) \text{mol}^{-1}} = (8.94)(10^{-2}) \text{ mol}$

15.	lsotope	Molar Mass (g/mol)	Sample Mass (g)	Number of Molecules	Number of Moles of Molecules	Number of Moles of Atoms
	NaCl	58.44	58.44	(6.02)(10 ²³)	1.00	2.00
	NH ₃	17.04	24.8	(8.79)(10 ²³)	1.46	5.84
	H ₂ O	18.02	1.58	(5.28)(10 ²²)	(8.77)(10 ⁻²)	(2.63)(10 ⁻¹)

16. (a) $PtBr_2$: M = 195.08 g/mol + 2(79.90) g/mol = 354.88 g/mol(b) $C_3H_5O_2H$: M = 3(12.01) g/mol + 5(1.01) g/mol + 2(16.00) g/mol + 1.01 g/mol= 74.09 g/mol

18. C₆H₆:
$$M = 78.12$$
 g/mol and given $m = 45.6$ g
 $n = \frac{m}{M} = \frac{45.6 \text{ g}}{78.12 \text{ g/mol}} = 0.584 \text{ mol}$
Using $n = \frac{N}{N_A}$, the number of molecules is

Chapter 6 Answers

14. Consider a 100 g sample.

Element	$n = \frac{m}{M}$ (mol)	Ratio to Smallest <i>n</i>	Revised Ratio	
C	$\frac{80.2}{12.01} = 6.677$	10.498	21	
0	$\frac{10.18}{16.00} = 0.636$	1.00	2	
Н	$\frac{9.62}{1.01} = 9.524$	14.975	30	

The empirical formula is $C_{21}O_2H_{30}$.

15. Consider a 100 g sample.

Element	$n = \frac{m}{M}$ (mol)	Ratio to Smallest <i>n</i>	Revised Ratio	
Na	$\frac{17.6}{22.99} = 0.766$	1.00	2	
Cr	$\frac{39.7}{52.00} = 0.763$	1.00	2	
0	$\frac{42.8}{16.00} = 2.675$	3.50	7	

The empirical formula is Na₂Cr₂O₇.

21. Mass of FeSO₄ • $xH_2O = 2.78$ g Mass of FeSO₄ = 1.52 g Mass of H₂O in sample = 2.78 g - 1.52 g = 1.26 g Moles of FeSO₄ = $\frac{1.52 \text{ g}}{151.92 \text{ g/mol}}$ = 0.01 mol FeSO₄

Moles of $H_2O = \frac{1.26 \text{ g}}{18.02 \text{ g/mol}}$ = 0.07 mol H_2O Divide moles of iron sulfate and water by 0.01 mol, this gives the ratio 1 mol FeSO₄ : 7 mol H_2O Therefore, x = 7 and the formula for the compound is FeSO₄ • 7H₂O.