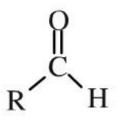
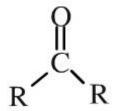

Aldehydes and Ketones

Chapter 1.5

The Carbonyl Group


- Aldehydes and ketones both contain the carbonyl group
- A carbonyl group is a carbon atom double bonded to an oxygen atom


 The difference between aldehydes and ketones is the location of the carbonyl group

Aldehydes and Ketones

An aldehyde is an organic molecule containing a carbonyl group that is bonded to at least one hydrogen atom

 A ketone is an organic compound that contains a carbonyl group bonded to two carbon atoms

Aldehyde or Ketone?

$$CH_2OH$$
 $C=O$
 $+O-C-H$
 $+C-OH$
 $+C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$
 $-C-OH$

Naming Aldehydes

- Use the suffix –al
- Always number the parent chain so that the carbonyl group is on carbon 1

Practice

1) Name the following aldehydes:

a)
$$c_{H_3} c_{CH_2} c_{H_3}$$
 b)

- 2) Draw structural diagrams for the following aldehydes:
- a) 3-methylpentanal b)2,3-dichloropropanal

Naming Ketones

- Use the suffix -one
- Number the parent chain so that the carbonyl group has the lowest number possible
- It may be necessary to use a number to indicate the position of the carbonyl group

Practice

1) Name the following ketones:

- 2) Draw structural diagrams for the following ketones:
- a) 3-methylbutanone b)cyclohexanone

Properties of Aldehydes and Ketones

- Oxygen has a much higher electronegativity than carbon
- Electrons from the double bond are attracted to the oxygen atom
- Thus carbonyl containing compounds are polar

Properties of Aldehydes and Ketones

- The dipole-dipole interactions give aldehydes and ketones higher melting and boiling points than their corresponding alkanes
- Aldehydes and ketones lack the ability to hydrogen bond to each other so their melting and boiling points are lower than their corresponding alcohols

Properties of Aldehydes and Ketones

Since aldehydes and ketones are polar, they will dissolve in water

Hydrogen bond between a slightly positive hydrogen and a lone pair on the oxygen in the carbonyl group

 Small aldehydes and ketones are completely soluble in water, but the solubility decreases as additional cabons are added to the chain

Preparing Aldehydes and Ketones

- Aldehydes and ketones are synthesized by the controlled oxidation of alcohols
- Controlled oxidation reactions use **oxidizing agents** such as potassium dichromate (K_2Cr_2O) , hydrogen peroxide (H_2O_2) , and potassium permanganate $(KMnO_4)$ to supply the oxygen
- For simplicity, we will use the symbol (O) to represent an oxidizing agent

Preparing Aldehydes and Ketones

- A primary alcohol is first oxidized to produce an aldehyde and water
- The aldehyde can then be further oxidized to produce a carboxylic acid (we will learn about carboxylic acids later)

Preparing Aldehydes and Ketones

 A secondary alcohol is oxidized to produce a ketone and water

• Tertiary alcohols do not undergo oxidation reactions

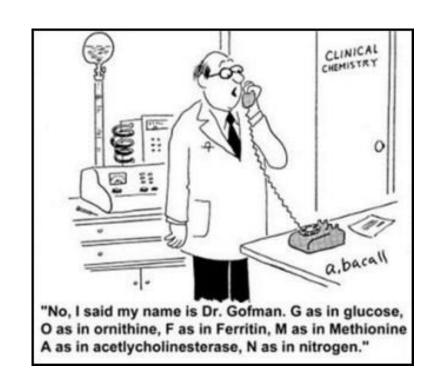
$$\begin{array}{c} OH \\ CH_3 - C - CH_3 + (O) \longrightarrow \text{ not readily oxidized} \quad \text{(no reaction)} \\ CH_3 \\ \text{2-methylpropan-2-ol} \\ \text{(3° alcohol)} \end{array}$$

- 1) Combustion
- 2) Addition Hydrogenation
- Aldehydes undergo hydrogenation to produce primary alcohols

$$CH_{3}-C-H+H-H \xrightarrow{catalyst} CH_{3}-C-H \text{ (hydrogenation reaction)}$$
 ethanal
$$H$$
 ethanol (1° alcohol)

 Ketones undergo hydrogenation to produce secondary alcohols

$$\begin{array}{c} O \\ | \\ CH_3-C-CH_3+H-H \\ \hline \\ propanone \\ \end{array} \xrightarrow[heat, pressure]{} CH_3-C-CH_3 \quad \text{(hydrogenation reaction)} \\ \\ H \\ \\ 2\text{-propanol} \\ \\ \text{(2° alcohol)} \end{array}$$


HOMEWORK

Required Reading:

p. 40-46

Questions:

- p. 41 #1-2
- p. 42 #1-2
- p. 43 #1-3
- p. 46 #1-5

