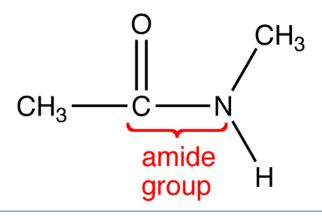
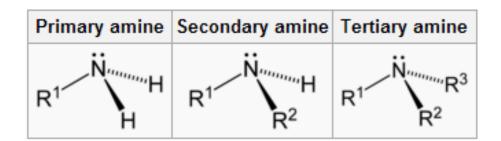

Amines and Amides


Chapter 1.7

Amines and Amides

- Amines and amides both contain nitrogen (N)
- An amine is an organic compound, related to ammonia, that contains a nitrogen atom bonded to one or more alkyl groups on each molecule

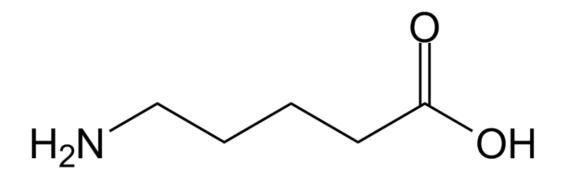


 An amide is an organic compound that contains a carbonyl group bonded to a nitrogen atom

Classifying Amines

 Amines can be classified as primary secondary or tertiary

Naming Amines

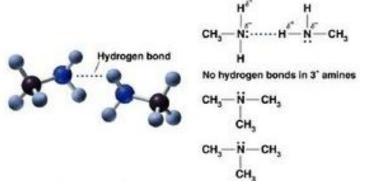

- Use the suffix –amine
- It may be necessary to include a number in the suffix to indicate which carbon group the amine is attached to

Naming Amines

 Secondary and tertiary amines are named using the locator, N, to indicate the attachment of additional chains to the nitrogen atom

Naming Amines

- Sometimes it is necessary to name the amine group as a branch
- In this case the prefix amino- is used



Properties of Amines

Amines are polar and some can hydrogen bond

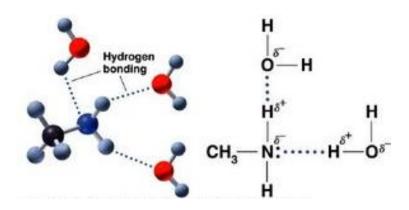
Amines have higher melting and boiling points than their

corresponding alkanes

Can you explain the trend below?

(a)
$$CH_3 - CH_2 - CH_2 - NH_2$$
 (b) $CH_3 - CH_2 - NH - CH_3$ (c) $CH_3 - N - CH_3$

o)
$$CH_3 - CH_2 - NH - CH_3$$


primary amine b.p. 49 °C

secondary amine b.p. 37 °C

tertiary amine b.p. 3 °C

Properties of Amines

Small amines are soluble in water

Reactions Involving Amines

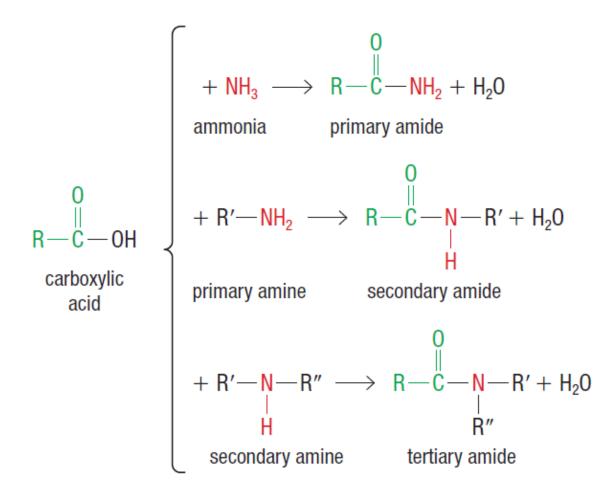
Amines behave as weak bases in water

$$\begin{array}{c} \mathsf{CH_3} \\ \\ \mathsf{CH_3} \\ \\ \mathsf{N} \\ \mathsf{I} \\ \\ \mathsf{CH_3} \end{array} + \ \mathsf{H}_2\mathsf{O} \longrightarrow \begin{array}{c} \mathsf{CH_3} \\ \\ \\ \mathsf{CH_3} \\ \\ \\ \mathsf{CH_3} \end{array} + \ \mathsf{O} \ \mathsf{H}^+ + \ \mathsf{O} \ \mathsf{H}^-$$

Amines can undergo neutralization reactions with acid

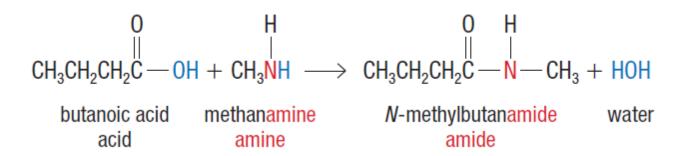
$$H_3C$$
 \rightarrow H_3C \rightarrow H_3C \rightarrow H_3C

Reactions Involving Amines


Primary amines can be synthesized by reacting an alkyl halide with ammonia

Secondary amines require an alkyl halide and a primary amine

Tertiary amines require an alkyl halide and a secondary amine


From Amines to Amides

 Amides can be synthesized by the condensation reaction of a carboxylic acid with ammonia or a primary or secondary amine

Naming Amides

- Use the suffix –amide
- Recall that amides are synthesized from the reaction of an amine with a carboxylic acid
 - The first part of the name comes from the amine
 - The second part of the name comes from the carboxylic acid

Practice

Name the following:

Draw a structural diagram for:

3-chloro-4-methylpentanamide

Properties of Amides

- Amides are weak bases
- Low molecular weight amides are soluble in water
- Amides that have the ability to hydrogen bond will have higher melting and boiling points

Reactions Involving Amides

- Amides can undergo a hydrolysis reaction (the reverse of condensation) to form an amine (or ammonia) and a carboxylic acid
- This reaction can take place under acidic or basic conditions

$$R - C - N - R' + H_2O + HCI \longrightarrow R - C - OH + H - N^{+} - R' CI^{-}$$

$$R - C - N - R' + H_2O + HCI \longrightarrow R - C - OH + H - N^{+} - R' CI^{-}$$

$$R - C - N - R' + NaOH \longrightarrow R - C - O - Na^{+} + H - N - R'$$

HOMEWORK

Required Reading:

p. 56-62

Questions:

p. 58 #1-2

p. 60 #1-2

p. 62 #1-6

	The Periodic Table According to Organic Chemists																
1 H 10079																	C 12.011
C 12.011	C 12.011						5 C 12.011	6 C 12.011	7 N 14,007	8 O 15,999	9 F 18,999	10 C 12.011					
11 C 12.011	12 C 12.011						13 C 12.011	14 C 12.011	15 C 12.011	16 C	17 Cl 35,450	18 C					
19 C	20 C	21 C	22 C	23 C	24 C	25 C	26 C	27 C	28 C	29 C	°C	31 C	32 C	33 C	34 C	35 Br	38 C
12.011	12.011	12.011	12.011	12.011	12.011	12.011	12.011	12.011	12.011 48	12.011	12.011	12.011	12.011	12.011	12.011 52	79.904 53	12.011
C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	Č 12.011	C 12.011	C 12.011	C 12.011	C 12.011	C 12.011	I 126.90	C 12,011
55 C 12.011	58 C 12,011	71 C 12.011	72 C	73 C	74 C 12.011	75 C	76 C 12.011	77 C 12.011	78 C 12.011	79 C	80 C 12,011	81 C	82 C 12.011	83 C 12,011	84 C 12.011	85 C 12.011	88 C 12.011
87 C 12.011	88 C 12.011	103 C 12.011	104 C 12.011	105 C 12.011	108 C 12.011	107 C 12.011	108 C 12.011	109 C 12.011	110 C		.2.011	12.211		-2.011	12.511	12.011	