Energy Changes in Chemical and Nuclear Reactions

Chapter 5.1

Thermochemistry

- Thermochemistry is the study of the energy changes that accompany physical or chemical changes in matter
- Energy is the ability to do work, measured in joules (J)
- Work is the amount of energy transferred by a force over a distance, also measured in joules (J)

Types of Energy

- **Potential Energy** is the energy of a body or a system due to its position or composition
- **Kinetic Energy** is the energy of an object due to its motion

(b) Kinetic energy

Thermal Energy

- **Thermal energy** is the total quantity of kinetic and potential energy in a substance
- This depends on how fast its particles are moving
- When a substance absorbs thermal energy, its particles move at a greater speed and it warms up

Heat

• Heat is the transfer of thermal energy from a warm object to a cooler object (it is a verb)

As we *heat* the water, we are *transferring thermal energy* from the stove burner to the water

Temperature

- Temperature is a measure of the average kinetic energy of entities in a substance
 - As a substance is warmed, some of its particles move faster
 - The average kinetic energy of the substances particles increases and so does the temperature of the substance

25°C

Temperature ≠ Thermal Energy

- The cup of water has the **higher temperature** because the average water molecule is moving faster
- The total quantity of **thermal energy is lower** in the cup because there are fewer water molecules in total

- The bathtub of water has the lower temperature because the average water molecule is moving slower
- The total quantity of **thermal energy is higher** in the bathtub because there are more water molecules in total

Law of Conservation of Energy

 The Law of Conservation of Energy states that energy cannot be created or destroyed, it can only be converted from one form into another

Divisions of the Universe

- A chemical system is a group of reactants and products being studied
- The surroundings are all the matter that is not part of the system

Types of Systems

- An **open system** is a system in which both matter and energy are free to enter and leave the system (ex: barbecue)
- A **closed system** is a system in which energy can enter and leave the system, but matter cannot (ex: glow stick)
- An isolated system is an ideal system in which neither matter nor energy can move in or out (it is impossible to set up a completely isolated system)

Endothermic and Exothermic Reactions

- An **exothermic** chemical reaction is one in which energy is released from the system to the surroundings
- An **endothermic** chemical reaction is one in which energy is absorbed by the system from the surroundings

Nuclear Energy

 A fusion reaction is the process of combining two or more nuclei of low atomic mass to form a heavier nucleus

Nuclear Energy

 A fission reaction is the process of using a neutron to split a nucleus of high atomic mass into two nuclei with smaller masses

 Table 1
 Examples of Magnitudes of Potential Energy Changes during a Phase Change, Chemical Change, and Nuclear Change

HOMEWORK

Required Reading:

p. 284-291

(remember to supplement your notes!)

Questions: p. 291 #1-9

