Bond Energies

Chapter 5.3

Bonds and Energy

• Breaking chemical bonds *requires* energy

- Forming chemical bonds *releases* energy
- The amount of energy required or released for a chemical process depends on the **number** and **types** of bonds that are formed and broken

Bond Dissociation Energy

- Bond dissociation energy is the energy required to break a given chemical bond
- The bond dissociation energy of a given bond is complex as it depends on the types of atoms and bonds in the same molecule

Process	Energy Required (kJ/mol)	
$CH_4(g) \rightarrow CH_3(g) + H(g)$	435	
$CH_3(g) \rightarrow CH_2(g) + H(g)$	453	
$CH_2(g) \rightarrow CH(g) + H(g)$	425	
$CH(g) \rightarrow C(g) + H(g)$	339	
	Total = 1652	

 For this reason, the use of an average bond energy is more convenient for predicting enthlapy changes in chemical reactions

 The units for average bond energy are kJ/mol, so this tells us that if we want to break one mole of C-H bonds into one mole of C atoms and one mole of H atoms it would take 413kJ of energy

Average Bond Energies

 Table 1
 Average Bond Energies (kJ/mol)

*C=0 in CO₂(g)=799

Single bonds			Multiple bonds
H–H 432	N–H 391	I–I 149	C=C 614
H–F 565	N–N 160	ICI 208	C=C 839
HCI 427	N–F 272	I–Br 175	0=0 495
H–Br 363	N-CI 200	S-H 347	C=0* 745
H–I 295	N–Br 243	S–F 327	C≡0 1072
С-Н 413	N–0 201	S-CI 253	N=0 607
CC 347	0–H 467	S–Br 218	N=N 418
C-N 305	0–0 146	S–S 266	N≡N 941
C-0 358	0–F 190	Si–Si 340	C≡N 891
C–F 485	0–CI 203	Si–H 393	C=N 615
C–CI 339	0–l 234	Si–C 360	
C–Br 276	F–F 154	Si–0 452	
C–I 240	F–Cl 253		
C–S 259	F–Br 237		
	CICI 239		
	CI–Br 218		
	Br-Br 193		

Average bond energies are published in tables like the one on page 307 of your textbook

•

Multiple Bonds

Multiple bonds tend to be shorter and stronger than single bonds

Multiple Bonds

Table 2 Bond Lengths of Some Common Bonds

Bond	Bond type	Bond length (pm)	Bond energy (kJ/mol)
C-C	single	154	347
C=C	double	134	614
C≡C	triple	120	839
С-О	single	143	358
C=0	double	123	745
C-N	single	143	305
C=N	double	138	615
C≡N	triple	116	891

Enthalpy and Bond Energies

$$\Delta H = \begin{bmatrix} \text{Sum of bond energies} \\ \text{of all bonds in} \\ \text{reactants} \end{bmatrix} - \begin{bmatrix} \text{Sum of bond energies} \\ \text{of all bonds in} \\ \text{products} \end{bmatrix}$$

$$\Delta H = \sum_{n \in D} (\text{bonds broken}) - \sum_{n \in D} (\text{bonds formed})$$

energy required energy released

Σ means 'sum of'
n is the amount (in moles) of a particular bond type
D is the bond energy per mole of bonds (it is always + and looked up in a table

Practice

Using bond energies, calculate the enthalpy change for the following reaction and determine whether it is exothermic or endothermic.

More Practice

Using bond energies, calculate the enthalpy change for the following reaction.

Practice Makes Perfect!

 Calculate the enthalpy change that would result from the complete combustion of pentane.

HOMEWORK

Required Reading:

p. 307-313

(remember to supplement your notes!)

Questions:

- p. 312 #1-4
- p. 313 #1-13

