Quantitative Changes in Equilibrium Systems

Chapter 7.5

Reaction Quotient

 The reaction quotient (Q) is the product of the concentrations of the products, divided by the product of the concentrations of the reactants, for a chemical reaction that is not necessarily at equilibrium

aA + bB ⇔ dD + eE

$$Q = \frac{[D]^{d}[E]^{e}}{[A]^{a}[B]^{b}}$$

Uses for the Reaction Quotient

 Q can be compared to K to determine if equilibrium has been reached

Example

At 2000K the equilibrium constant, K, for the formation of NO is 4.0 x 10⁻⁴. If the reaction vessel is sampled and [N₂] = 0.50, [O₂] = 0.25, [NO]=4.2 x 10⁻³M, has the reaction reached equilibrium?

$$N_{2(g)} + O_{2(g)} \rightleftharpoons 2 NO_{(g)}$$

Practice

Consider the following reaction:

 $PCl_{5}(g) \Leftrightarrow PCl_{3}(g) + Cl_{2}(g)$ @ 250°C K_c= 4.0 x 10⁻²

If [Cl₂] and [PCl₃] = 0.30M and [PCl₅] = 3.0M, is the system at Equilibrium? If not, which direction will it proceed?

Calculating Equilibrium Concentrations

- We saw in section 7.1 that an ICE chart could be used to calculate equilibrium concentrations using initial concentrations and one equilibrium concentration
- We saw in section 7.2 that the equilibrium constant, K, could be calculated using equilibrium concentrations
- Today we will calculate equilibrium concentrations using initial concentrations, an ICE chart and the equilibrium constant

(and math...Yay!)

Perfect Square Method

 $H_{2(g)} + I_{2(g)} \iff 2HI_{(g)}$ @ 699K K_{eq} = 55.17

In an experiment, 1.00 mol of each H₂ and I₂ are placed in a 0.500 L flask and the system is allowed to reach equilibrium. Find the concentration of products and reactants at equilibrium.

Quadratic Equation Method

 If the equilibrium expression is not a perfect square the quadratic equation must be used to find x

 $\mathbf{a}\mathbf{x}^2 + \mathbf{b}\mathbf{x} + \mathbf{c} = \mathbf{0}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Quadratic Equation Method

 $H_{2(g)} + I_{2(g)} \iff 2HI_{(g)} \qquad @ 458^{o}C K_{eq} = 47.9$

In an experiment, 1.00 mol of H₂ and 2.00 mol of I₂ are placed in a 1 L flask and the system is allowed to reach equilibrium. Find the concentration of products and reactants at equilibrium.

Simplification Method

 $2CO_{2(g)} \rightleftharpoons 2CO_{(g)} + O_{2(g)}$ K=6.40x10⁻⁷ at 2000^oC

In an experiment, 0.25M of $CO_{2(g)}$ is placed in reaction vessel and the system is allowed to reach equilibrium. Find the concentration of products and reactants at equilibrium.

Calculating Equilibrium Concentrations Summary

- 1. Write the balanced equation
- 2. Convert all amounts given to mol/L or M
- 3. Set up an ICE chart
- 4. Write out the equilibrium law expression
- 5. Sub in the given value for K and the equilibrium concentrations from the ICE chart
- 6. Solve for x (Using the appropriate method: perfect square, quadratic formula, or simplification method)
- 7. Sub x in to solve for the equilibrium concentrations

HOMEWORK

Required Reading:

p. 447-459

(remember to supplement your notes!)

Questions:

- p. 452 #1-3
- p. 454 #1-3
- p. 458 #1-3
- p. 459 #1-8

