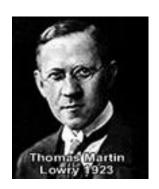
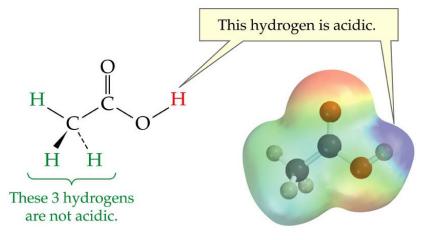

The Nature of Acids and Bases

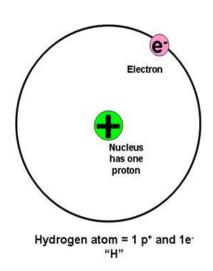
Chapter 8.1

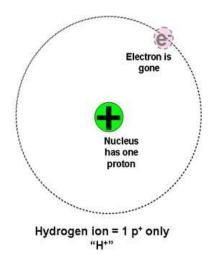
The Arrhenius Theory of Acids and Bases

- An acid is a substance that produces hydrogen ions in aqueous solution
- A base is a substance that produces hydroxide ions in aqueous solution

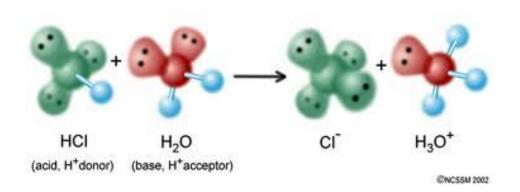

$$HCl(g) \xrightarrow{water} H^{+}(aq) + Cl^{-}(aq)$$

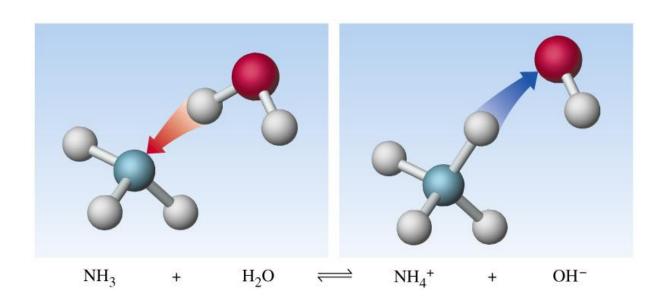

$$NaOH(s) \xrightarrow{water} Na^{+}(aq) + OH^{-}(aq)$$

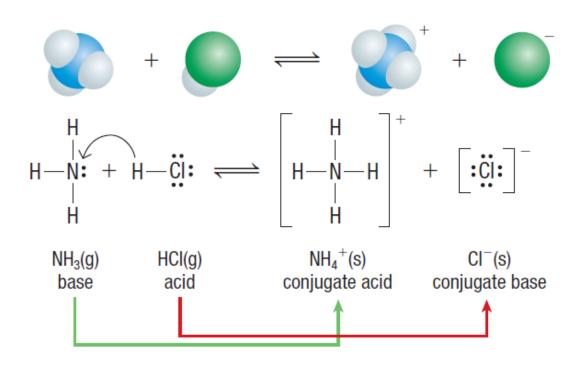

The Brønsted-Lowry Theory of Acids and Bases



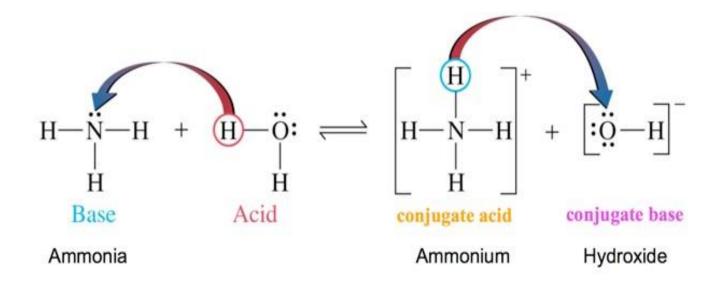
- An acid is a hydrogen ion donor
- A base is a hydrogen ion acceptor






Brønsted-Lowry Acids

Brønsted-Lowry Bases



Brønsted-Lowry Acids and Bases

Conjugate Acid-Base Pairs

- A conjugate acid is the substance that forms when a base accepts a hydrogen ion
- A conjugate base is the substance that forms when an acid loses a hydrogen ion

Practice

 Label the acid, base, conjugate acid, and conjugate base in each of the following reactions:

- a) $HCN + H_2O \rightleftharpoons H_3O + CN^-$
- b) $HF + CH_3COOH \rightleftharpoons CH_3COOH_2^+ + F^-$
- c) $CH_3COOH + NH_3 \rightleftharpoons NH_4^+ + CH_3COO^-$

Amphiprotic (Amphoteric) Substances

 An amphiprotic (or amphoteric) substance is able to donate or accept a hydrogen ion and thus can act as both an acid and a base depending on the reaction

Acting as a base
$$HCI + H_2O \implies CI^- + H_3O^+$$

Acting as an acid $NH_3 + H_2O \implies NH_4^+ + OH^-$

The Acid Ionization Constant (K_a)

 Ka is the equilibrium constant for the ionization of an acid (also called the acid dissociation constant)

$$HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq).$$

$$K_{\rm a} = \frac{[{\rm H_3O^+(aq)}][{\rm A^-(aq)}]}{[{\rm H_2O(l)}][{\rm HA(aq)}]}$$

$$HA(aq) \Longrightarrow H^+(aq) + A^-(aq)$$

$$K_a = \frac{[H^+(aq)][A^-(aq)]}{[HA(aq)]} \text{ where } [H^+(aq)] \text{ is equivalent to } [H_3O^+(aq)]$$

$$H_3PO_4 \implies H^+ + H_2PO_4^- \qquad \qquad K_a = \frac{[H^+][H_2PO_4^-]}{[H_3PO_4]}$$

Example

Write the acid ionization constant equation for the equilibrium reaction of ethanoic acid and water:

$$HC_2H_3O_2(aq) \rightleftharpoons H^+(aq) + C_2H_3O_2^-(aq)$$

Table 1 Some Acid Ionization Constants

Acid	Acid ionization constant, <i>K</i> _a
hydrocyanic, HCN(aq)	6.2×10^{-10}
benzoic, HC ₆ H ₅ CO ₂ (aq)	6.3×10^{-5}
propanoic, HC ₃ H ₅ O ₂ (aq)	1.3×10^{-5}
ethanoic (acetic), HC ₂ H ₃ O ₂ (aq)	1.8×10^{-5}
hydrofluoric, HF(aq)	6.6×10^{-4}
nitrous, HNO ₂ (aq)	4.6×10^{-4}
methanoic (formic), HCHO ₂ (aq)	1.8×10^{-4}

K_a values can be looked up on p. 726 of your text

HOMEWORK

Required Reading:

p. 486-494

(remember to supplement your notes!)

Questions:

p. 492 #1,2

p. 493 #1

p. 494 #1-11

