Strong and Weak Acids and Bases

Chapter 8.2

Strong Acids and Weak Acids

 A strong acid is an acid that ionizes almost completely in water

$$\begin{array}{c} \operatorname{HCl}_{(aq)} + \operatorname{H}_2\operatorname{O}_{(l)} \to \operatorname{H}_3\operatorname{O}^+_{(aq)} + \operatorname{Cl}^-_{(aq)} \\ \\ \underbrace{ \begin{array}{c} \\ 0.0004\% \text{ at} \end{array}}_{99.996\% \text{ at equilibrium}} \end{array}$$

• A weak acid is an acid that only partially ionizes in water

$$\frac{\text{HC}_{2}\text{H}_{3}\text{O}_{2(aq)}}{\overset{}{\overset{}}_{98.7\% \text{ at equilibrium}}} + \frac{\text{H}_{2}\text{O}_{(l)}}{\overset{}{\overset{}}_{1.3\% \text{ at equilibrium}}} + \frac{\text{H}_{2}\text{O}_{(l)}}{\overset{}{\overset{}}_{1.3\% \text{ at equilibrium}}}$$

Strong Acids and Weak Acids

Acid Strength and K_a

 $HA(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + A^-(aq).$

$$K_{a} = \frac{[H^{+}(aq)][A^{-}(aq)]}{[HA(aq)]}$$

Property	Strong acid	Weak acid
Value of acid ionization constant, K_{a}	<i>K</i> _a is large	<i>K</i> _a is small
Position of the ionization equilibrium	far to the right	far to the left
Equilibrium concentration of H ⁺ (aq) compared with original concentration of HA	$[H^+(aq)]_{equilibrium} \approx [HA(aq)]_{initial}$	$[H^+(aq)]_{equilibrium} << [HA(aq)]_{initial}$

Types of Acids

• Oxyacids

• Organic Acids

• Binary Acids

Acid formula	Name	Value of <i>K</i> _a
HCIO ₄ (aq)	perchloric acid	very large
HNO ₃ (aq)	nitric acid	very large
HCI(aq)	hydrochloric acid	very large
HSO ₄ ⁻ (aq)	hydrogen sulfate ion	$1.2 imes10^{-2}$
HCIO ₂ (aq)	chlorous acid	$1.2 imes 10^{-2}$
HF(aq)	hydrofluoric acid	$6.6 imes10^{-4}$
HNO ₂ (aq)	nitrous acid	$4.6 imes10^{-4}$
HC ₂ H ₃ O ₂ (aq)	ethanoic acid	$1.8 imes 10^{-5}$
HCIO(aq)	hypochlorous acid	$3.5 imes10^{-8}$
HCN(aq)	hydrocyanic acid	$6.2 imes 10^{-10}$
NH ₄ ⁺ (aq)	ammonium ion	$5.8 imes 10^{-10}$
HCO ₃ ⁻ (aq)	hydrogen carbonate ion	$4.7 imes 10^{-11}$

increasing acid strength

Strong Bases and Weak Bases

- A strong base is a base that dissociates completely in water
 - Hydroxides of group 1 and group 2 elements tend to be strong bases

 $KOH(s) \rightarrow K^+(aq) + OH^-(aq)$

- A weak base is a base that only partially dissociates in water
 - Many organic bases are weak bases

 $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + OH^-(aq)$

Base Ionization Constant (K_b)

The base ionization constant (K_b) is the equilibrium constant for the ionization of a base (it is also called the base dissociation constant)

$$\begin{array}{rl} B(aq) + H_2O(l) \rightleftharpoons BH^+(aq) + OH^-(aq) \\ base & acid & conjugate & conjugate \\ & acid & base \end{array}$$

$$K_{\rm b} = \frac{[\rm BH^+(aq)][\rm OH^-(aq)]}{[\rm B(aq)]}$$

• Write the K_b equation for ammonia

Base Ionization Constant (K_b)

- K_b values can be looked up on p. 727 of your textbook
- Similarly to acids, weak bases will have a small value for K_b and strong bases will have a large value for K_b

Name of base	Formula	K b
dimethylamine	(CH ₃) ₂ NH(aq)	$9.6 imes10^{-4}$
butylamine	C ₄ H ₉ NH ₂ (aq)	$5.9 imes10^{-4}$
methylamine	CH ₃ NH ₂ (aq)	$4.4 imes10^{-4}$
aniline	C ₆ H ₅ NH ₂ (aq)	$4.1 imes 10^{-10}$
ammonia	NH ₃ (aq)	$1.8 imes10^{-5}$
hydrazine	N ₂ H ₄ (aq)	$1.7 imes10^{-6}$
morphine	C ₁₇ H ₁₉ NO ₃ (aq)	$7.5 imes 10^{-7}$
hypochlorite ion	CIO ⁻ (aq)	$3.45 imes10^{-7}$
pyridine	C ₅ H ₅ N(aq)	$1.7 imes 10^{-9}$
ethanoate ion	$C_2H_3O_2^-(aq)$	$5.6 imes10^{-10}$
urea	NH ₂ CONH ₂ (aq)	$1.5 imes 10^{-14}$

Water is Amphiprotic

- Water can behave as both an acid and a base in the *same reaction*
- The autoionization of water is the transfer of a hydrogen ion from one water molecule to another

The Ion-Product Constant for Water (K_w)

 $2 H_2O(l) = H_3O^+(aq) + OH^-(aq) K = \frac{[H_3O^+(aq)][OH^-(aq)]}{[H_2O(l)]^2}$

 $K = [H_3O^+(aq)][OH^-(aq)]$

$$K_{\rm w} = [{\rm H}^+({\rm aq})][{\rm OH}^-({\rm aq})]$$

 $K_{\rm w} = 1.0 \times 10^{-14}$

In a NEUTRAL solution [H⁺] = [OH⁻]
In an ACIDIC solution [H⁺] > [OH⁻]
In a BASIC solution [H⁺] < [OH⁻]

 If a solution has a hydroxide ion concentration of 3.5x10⁻⁵ mol/L what is the hydronium ion concentration? Is the solution acidic or basic?

The Relationship Between K_w, K_a and K_b

$$HA(aq) + H_2O(l) \rightleftharpoons A^-(aq) + H_3O^+(aq) \qquad K_a = \frac{[H_3O^+(aq)][A^-(aq)]}{[HA(aq)]}$$

$$A^{-}(aq) + H_{2}O(l) \rightleftharpoons HA(aq) + OH^{-}(aq) \qquad K_{b} = \frac{[HA][OH^{-}]}{[A^{-}]}$$

 $K_a K_b = K_w$

- A strong acid or base has a very weak conjugate
- A weak acid or base has a weak conjugate
- A very weak acid or base has a strong conjugate

 Chlorous acid (HClO₂) has a K_a of 1.2x10⁻². What is the base ionization constant for its conjugate base?

pH and pOH

pH is the negative logarithm of the concentration of hydrogen ions in an aqueous solution

$$pH = -log[H^+]$$
 $[H^+] = 10^{-pH}$

 pOH is the negative logarithm of the concentration of hydroxide ions in an aqueous solution

 $pOH = -log[OH^{-}]$ [OH^{-}] = 10^{-pOH}

1. A solution has a pH of 2.6. What is the hydrogen ion concentration in the solution?

2. A solution has a hydroxide ion concentration of 3.2x10⁻⁴. What is the pH of the solution?

Measuring pH

- A pH meter is an electronic device that measures the acidity of a solution and displays the result as a pH value
- An **acid-base indicator** is a substance that changes colour within a specific pH range

pH and pOH

Since [H⁺] and [OH⁻] are related through K_w
 [H⁺] [OH⁻] = K_w
 [H⁺] [OH⁻] = 1.0x10⁻¹⁴

pH and pOH are related through pK_w
 pH + pOH = pK_w
 pH + pOH = 14

		pН	[H+]	[OH-]	pOH
		- 14	1×10 ⁻¹⁴	1×10^{-0}	0
-	NaOH, 0.1M	- 13	1×10^{-13}	1×10^{-1}	1
basi	Household bleach Household ammonia -	- 12	1×10^{-12}	1×10^{-2}	2
More		- 11	1×10^{-11}	1×10^{-3}	3
A	Milk of magnesia	- 10	1×10^{-10}	1×10^{-4}	4
	Borax	- 9	1×10^{-9}	1×10^{-5}	5
	Baking soda Egg white, seawater Human blood, tears Milk	- 8	1×10^{-8}	1×10^{-6}	6
		- 7	1×10 ⁻⁷	1×10 ⁻⁷	7
		- 6	1×10^{-6}	1×10^{-8}	8
	Black coffee	- 5	1×10^{-5}	1×10^{-9}	9
idic	Banana	- 4	1×10 ⁻⁴	1×10^{-10}	10
re ac	Cola, vinegar	- 3	1×10^{-3}	1×10 ⁻¹¹	11
Mo	Lemon juice	- 2	1×10^{-2}	1×10 ⁻¹²	12
	Gastric juice	- 1	1×10 ⁻¹	1×10 ⁻¹³	13
		- 0	1×10^{0}	1×10^{-14}	14
	Gastric juice	- 1 - 0	1×10^{-1} 1×10^{0}	1 × 10 ⁻¹³ 1 × 10 ⁻¹⁴	13

• For the following equilibrium system calculate:

- a) K_a b) K_b c) [H⁺] d) [OH⁻]
- e) pH
- f) pOH

HOMEWORK

Required Reading: p. 495-509

(remember to supplement your notes!)

Questions:

- p. 502 #1,2
- p. 505 #1-3
- p. 508 #1-4

p. 509 #1-10

