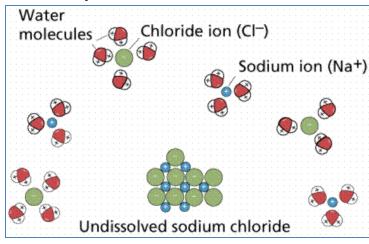
# Acid-Base Properties of Salt Solutions

Chapter 8.6


## Salts in Solution

 A salt is an ionic solid that contains cations and anions in a repeating crystalline pattern

Salts are electrolytes which means that they dissociate into ions

when they dissolve in water

NaCl(s) 🖶 Na+(aq) + Cl-(aq)



- Neutral salts produce neither hydrogen ions or hydroxide ions when they dissolve in water
- Basic salts will increase the hydroxide ion concentration when they dissolve in water
- Acidic salts will increase the hydrogen ion concentration when dissolved in water

## Salts That Produce Neutral Solutions

#### Salts of strong acids/strong bases

Example – solution of MgBr<sub>2</sub>, salt of strong acid + strong base

2HBr 
$$_{(aq)}$$
 + Mg(OH) $_{2\,(aq)}$   $\rightarrow$  2 H<sub>2</sub>O  $_{(l)}$  + MgBr $_{2\,(aq)}$  formation

$$MgBr_{2 (aq)} \rightarrow Mg^{2+}_{(aq)} + 2 Br_{(aq)}^{-}$$
 dissolution

Weak conjugate Br- (aq) + 100 > No reaction

acid

Weak conjugate acid and base do not hydrolyze (do not react with water)  $\Rightarrow$  pH = 7

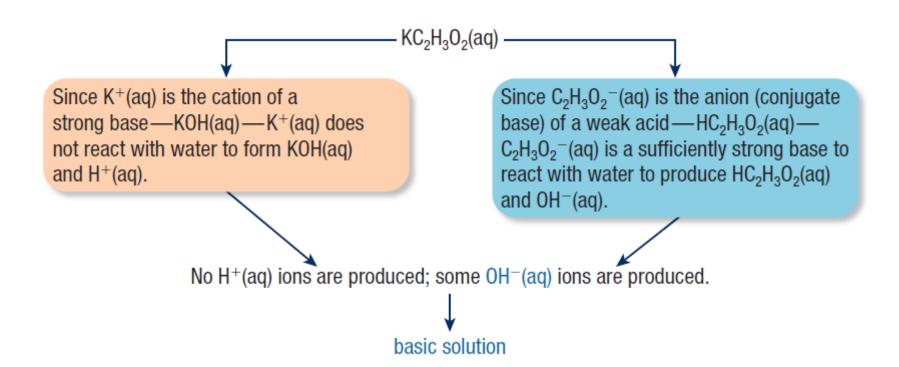
### Salts That Produce Neutral Solutions



## Salts That Produce Basic Solutions

## Salt of Strong Acid/Weak Base

Salts of strong acids/weak bases


Example – aqueous solution of  $NH_4NO_3$ ,

which is salt of strong acid (HNO<sub>3</sub>) and weak base (NH<sub>3</sub>):

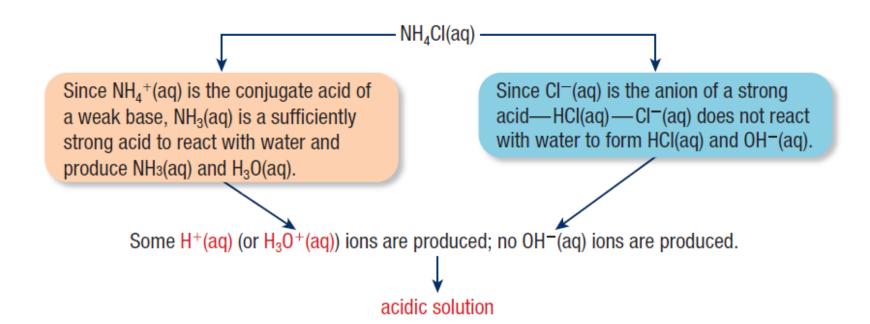
$$\begin{array}{c} HNO_{3(aq)} + NH_{3\ (aq)} \xrightarrow{} NH_{4}NO_{3\ (aq)} \quad \textit{formation} \\ NH_{4}NO_{3\ (aq)} \xrightarrow{} NH_{4}^{+}_{\ (aq)} + NO_{3\ (aq)} \quad \textit{dissolution} \\ \\ \text{Weak conjugate} \\ \text{base of strong} \\ \text{acid} & NO_{3\ (aq)}^{-} + H_{2}O \xrightarrow{} H_{3}O^{+}_{\ (aq)} + NH_{3\ (aq)} \quad \textit{reaction!} \\ \\ \text{Strong} \\ \text{conjugate acid} \\ \text{of weak base} & NH_{4}^{+}_{\ (aq)} + H_{2}O \xrightarrow{} H_{3}O^{+}_{\ (aq)} + NH_{3\ (aq)} \quad \textit{reaction!} \\ \end{array}$$

Conjugate acid of the weak base is strong thus it will hydrolyze  $\Rightarrow$  pH < 7

## Salts That Produce Basic Solutions



## Salts That Produce Acidic Solutions


## Salt of Weak Acid/Strong Base

Salts of weak acids/strong bases

**Example** – solution of NaF, salt of weak acid + strong base

Conjugate base of the weak acid is strong, it will hydrolyze ⇒ pH > 7

## Salts That Produce Acidic Solutions



#### Salt of Weak Acid/Weak Base

#### Salts of weak acids/weak bases

-conjugate base of the weak acid will hydrolyze, as will the conjugate acid of the weak base. One must look at the  $pK_a$  and  $pK_b$  to predict the pH of solution.

Example – solution of C<sub>2</sub>H<sub>5</sub>NH<sub>3</sub>C<sub>7</sub>H<sub>5</sub>O<sub>2</sub>,(ethylammonium benzoate), salt of weak acid + weak base

$$C_7H_5O_2H_{(aq)} + C_2H_5NH_{2 (aq)} \rightarrow C_2H_5NH_3C_7H_5O_{2 (aq)}$$
 formation  
 $C_2H_5NH_3C_7H_5O_{2 (aq)} \rightarrow C_2H_5NH_{3 (aq)}^+ + C_7H_5O_{2 (aq)}^-$  dissolution

Strong 
$$C_2H_5NH_3^+_{(aq)} + H_2O \Rightarrow H_3O^+_{(aq)} + C_2H_5NH_{2 (aq)}$$
 reaction!  $C_7H_5O_2^-_{(aq)} + H_2O \Rightarrow C_7H_5O_2H_{(aq)} + OH^-_{(aq)}$  reaction!

Strong conjugate base of weak acid

How do we predict which wins out in this competition?

But there's a fourth option!

- If the  $K_a$  value for the acidic ion is larger than the  $K_b$  value for the basic ion, the solution will be acidic.
- If the  $K_b$  value is larger than the  $K_a$  value, the solution will be basic.
- Equal  $K_a$  and  $K_b$  values result in a neutral solution.

## Summary

#### **Behavior of Salts in Water**

| Table 18.8 The Be                                                                                       | havior | of Salts in Wat                                            | er                            |
|---------------------------------------------------------------------------------------------------------|--------|------------------------------------------------------------|-------------------------------|
| Salt Solution<br>(Examples)                                                                             | рН     |                                                            | Ion That Reacts<br>with Water |
| Neutral<br>[NaCl, KBr,<br>Ba(NO <sub>3</sub> ) <sub>2</sub> ]                                           | 7.0    | Cation of<br>strong base<br>Anion of<br>strong acid        | None                          |
| Acidic<br>[NH <sub>4</sub> Cl, NH <sub>4</sub> NO <sub>3</sub> ,<br>CH <sub>3</sub> NH <sub>3</sub> Br] | <7.0   | Cation of<br>weak base<br>Anion of<br>strong acid          | Cation                        |
| Acidic<br>[Al(NO <sub>3</sub> ) <sub>3</sub> ,<br>CrCl <sub>3</sub> , FeBr <sub>3</sub> ]               | <7.0   | Small, highly<br>charged cation<br>Anion of<br>strong acid | Cation                        |
| Basic<br>[CH <sub>3</sub> COONa,<br>KF, Na <sub>2</sub> CO <sub>2</sub> ]                               | >7.0   | Cation of<br>strong base<br>Anion of<br>weak acid          | Anion                         |

## Practice

 Calculate the pH of a 0.20mol/L solution of ammonium chloride NH<sub>4</sub>Cl<sub>(aq)</sub>

## Hydrolysis of Amphiprotic Ions

```
NaHSO<sub>4</sub>(aq) \rightarrow Na<sup>+</sup>(aq) + HSO<sub>4</sub><sup>-</sup>(aq)

(dissociation)

HSO<sub>4</sub><sup>-</sup>(aq) + H<sub>2</sub>O(l) \rightleftharpoons H<sub>3</sub>O<sup>+</sup>(aq) + SO<sub>4</sub><sup>2-</sup>(aq) K_a = 1.2 \times 10^{-2}

(acid hydrolysis)

HSO<sub>4</sub><sup>-</sup>(aq) + H<sub>2</sub>O(l) \rightleftharpoons OH<sup>-</sup>(aq) + H<sub>2</sub>SO<sub>4</sub>(aq) K_b = very small (base hydrolysis)
```

# Hydrolysis of Metallic and Non-metallic Oxides

Metallic oxides dissolve in water to produce basic solutions

$$CaO(s) + H_2O(l) \rightleftharpoons Ca^{2+}(aq) + 2OH^{-}(aq)$$

Non-metallic oxides dissolve in water to produce acidic solutions

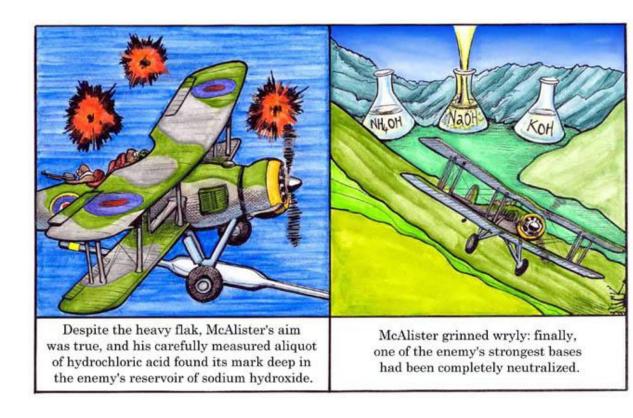
$$CO_2(g) + H_2O(l) \rightleftharpoons H_2CO_3(aq)$$
  
 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$   
 $CO_2(g) + 2 H_2O(l) \rightleftharpoons H_3O^+(aq) + HCO_3^-(aq)$  (net equation)

## **HOMEWORK**

### Required Reading:

p. 531-539

(remember to supplement your notes!)


#### **Questions:**

p. 534 #1,2

p. 536 #1,2

p. 538 #1,2

p. 539 #1-7

