Section 4.6: Quantum Mechanics and Bonding: Hybridization Section 4.6 Questions, page 238

1. The hybrid atomic orbitals in a molecule of phosphine, PH_3 , are sp^3 hybrid orbitals. Phosphorus:

2. A sigma bond forms from the direct, head-on overlap of two molecular orbitals, and a pi bond forms from the overlap of the lobes of two parallel molecular orbitals.

3. The bonding in elemental oxygen involves the overlap of a *p* orbital from each atom to form one sigma bond and the overlap of another p orbital from each atom to form one pi bond. No orbital hybridization is required.

4. (a) The three-dimensional structure that results from *sp* orbitals is linear.

The three-dimensional structure that results from sp^2 orbitals is trigonal planar.

The three-dimensional structure that results from sp^3 orbitals is tetrahedral.

(b) Of the hybrid orbitals sp, sp^2 , and sp^3 , only sp and sp^2 can form multiple bonds.

5. The atoms in a single bond can rotate about the central axis without breaking the sigma bond. The bonds in a double or triple bond break when the central axis is rotated because the rotation of the atoms about a central axis disturbs the overlap of the parallel orbitals involved in a pi bond(s), causing the double or triple bonds to break.

6. (a) Hybridization of CO: sp

Three-dimensional structure of CO: linear

(b) Hybridization of $H_2CO: sp^2$

Three-dimensional structure of H₂CO: trigonal planar

(c) Hybridization of SiF₄: sp^3

Three-dimensional structure of SiF₄: tetrahedral

7.							
		(a)	(b)	(c)	(d)	(e)	(f)
				Orbital c		Orbital	
	Atom	Electron configuration	Valence electrons	Excited- state atom	Hybrid orbitals	Orbitals available for bonding	used to form sigma bonds
	hvdrogen	$1s^1$	1s	does not	none	1	1s
			\uparrow	need to promote			
				electrons			
(i)	boron	[He] $2s^2 2p^1$	2 <i>p</i> ↑	2 <i>p</i> ↑ ↑	2 <i>p</i> ↑ ↑ ↓	3	sp^2
			2 <i>s</i> ↑↓	2 <i>s</i> ↑	$\begin{array}{c c} 2s & sp^2 \\ \hline \uparrow & \uparrow \uparrow \uparrow \end{array}$		
(ii)	silicon	[Ne] $3s^2 3p^2$	$3p$ $\uparrow \uparrow \uparrow$	$3p$ $\uparrow \uparrow \uparrow$	$\begin{array}{c c} 3p \\ \hline \uparrow \uparrow \uparrow \uparrow \end{array}$	4	sp^3
			3s	3 <i>s</i> ↑	$\begin{array}{c c} 3s & sp^3 \\ \hline \uparrow & \uparrow \uparrow \uparrow \uparrow \uparrow \end{array}$	_	
(iii)	nitrogen	[He] $2s^2 2p^3$	$\begin{array}{c} 2p \\ \uparrow \uparrow \uparrow \uparrow \end{array}$	does not need to promote	$\begin{array}{c} 2p \\ \uparrow \uparrow \uparrow \uparrow \end{array}$	3	sp^3
			2s	electrons	$\begin{array}{c c} 2s & sp^{3} \\ \hline \uparrow \downarrow & \hline \uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \end{array}$	_	
(iv)	chlorine	[Ne] $3s^2 3p^5$	$\begin{array}{c} 3p \\ \uparrow\downarrow\uparrow\downarrow\uparrow\downarrow\uparrow\uparrow \end{array}$	does not need to promote	$\begin{array}{c} 3p \\ \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \end{array}$	1	sp°
			3 <i>S</i> ↑↓	electrons	$\begin{array}{ccc} 3s & sp^{s} \\ \uparrow \downarrow & \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow \end{array}$	-	

8. (a) The hybridization of the central S atom in H_2S is sp^3 .

(b) The hybridization of the central C atom in CCl₄ is sp^3 .

(c) The hybridization of the central N atom in NCl₃ is sp^3 .

(d) The hybridization of the central C atom in CO_2 is *sp*.

(e) The hybridization of the N atoms in N_2 is *sp*.

(f) The hybridization of the B atoms in B_2F_4 is sp^2 .

9. (a) In the benzene molecule, the hybridization of each C atom is sp^2 .

(b) You would expect a bond angle of 120° in the benzene molecule.

10. The statement "A triple bond forms from a pi bond and 2 sigma bonds. In the molecule HCN, the sp3 hybrid orbital of carbon results in a tetrahedral shape" is not correct. The statement misrepresents the numbers of pi and sigma bonds that form a triple bond. The statement should read "A triple bond forms from 2 pi bonds and 1 sigma bond. In the molecule HCN, the sp hybrid orbital of carbon results in a linear shape."

11. (a) The Lewis structure of propadiene is

$$\begin{array}{ccc}
H & H \\
C = C = C \\
H & H
\end{array}$$

(b) The type of hybrid orbits involved on the end carbon atoms are sp^2 orbits, because the end carbons are involved in 3 sigma bonds and 1 pi bond.

(c) The shape about the end carbon atoms will be trigonal planar.