Section 8.1: The Nature of Acids and Bases Tutorial 1 Practice, page 492

 (a) HCHO₂(aq) donates a proton, so it is an acid and CHO₂⁻ (aq) is its conjugate base; H₂O(l) accepts a proton, so it is a base and H₃O⁺(aq) is its conjugate acid.
 (b) C₆H₅NH₃⁺(aq) donates a proton, so it is an acid and C₆H₅NH₂(aq) is its conjugate base; H₂O(l) accepts a proton, so it is a base and H₃O⁺(aq) is its conjugate acid.
 (c) H₂CO₃(aq) donates a proton, so it is an acid and HCO₃⁻(aq) is its conjugate base; OH⁻(aq) accepts a proton, so it is a base and H₂O(l) is its conjugate base; OH⁻(aq) accepts a proton, so it is a base and H₂O(l) is its conjugate base; OH⁻(aq) donates a proton, so it is an acid and SO₄²⁻(aq) is its conjugate base; HPO₄²⁻(aq) donates a proton, so it is a base and H₂PO₄⁻(aq) is its conjugate base; HPO₄²⁻(aq) accepts a proton, so it is a base and H₂PO₄⁻(aq) is its conjugate acid.
 (e) HCl(aq) donates a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is an acid and Cl⁻(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is a base and H₂SO₄(aq) is its conjugate base; HSO₄⁻(aq) accepts a proton, so it is a base and H₂SO₄(aq) is its conjugate acid.
 HSO₄⁻(aq) is amphiprotic because it is able to donate a proton and it is able to accept a proton.

Tutorial 2 Practice, page 493

1. HCN(aq) + H₂O(l)
$$\implies$$
 H₃O⁺(aq) + CN⁻(aq)
 $K = \frac{[H_3O^+(aq)][CN^-(aq)]}{[HCN(aq)]}$
2. HNO₂(aq) + H₂O(l) \implies H₃O⁺(aq) + NO₂⁻(aq)
 $K = \frac{[H_3O^+(aq)][NO_2^-(aq)]}{[HNO_2(aq)]}$
3. HSO₄⁻(aq) + H₂O(l) \implies H₃O⁺(aq) + SO₄²⁻(aq)
 $K = \frac{[H_3O^+(aq)][SO_4^{2-}(aq)]}{[HSO_4^-(aq)]]}$

Section 8.1 Questions, page 494

1. (a) K_a is the acid dissociation constant, which is the ratio of ions to undissociated molecules of acid.

(b) Amphiprotic means "able to donate or accept a hydrogen ion."

(c) A hydronium ion is a water molecule that has accepted a hydrogen ion.

(d) A hydroxide ion is a negative ion consisting of an oxygen atom and a hydrogen ion.

(e) A conjugate acid is a substance formed by accepting a hydrogen ion.

(f) A conjugate base is a substance formed by donating a hydrogen ion.

2. (a) The two concentrations are equal.

(b) The hydrogen ion concentration is greater than the hydroxide ion concentration.

(c) The hydrogen ion concentration is less than the hydroxide ion concentration.

3. (a) An Arrhenius acid forms hydrogen ions in aqueous solution; an Arrhenius base forms hydroxide ions in aqueous solution.

(b) A Brønsted–Lowry acid is a proton donor; a Brønsted–Lowry base is a proton acceptor.

4. (a) $HF(aq) + H_2O(l) \implies H_3O^+(aq) + F^-(aq)$

(b) $HNO_2(aq) + H_2O(l) \implies H_3O^+(aq) + NO_2^-(aq)$

(c) $HCO_3^{-}(aq) + H_2O(l) \Longrightarrow H_3O^{+}(aq) + CO_3^{2^{-}}(aq)$ (d) $HCN(aq) + H_2O(l) \Longrightarrow H_3O^{+}(aq) + CN^{-}(aq)$

5.

Substance	Arrhenius theory	Brønsted–Lowry theory
	acid – forms hydronium ion	acid – donates a proton
	base – forms hydroxide ion	base – accepts a proton
		both – can donate or accept a proton
$NH_4^+(aq)$	acid	acid
NH ₃ (aq)	acid	both
$H_2O(1)$	both	both
$C_2H_3O_2(aq)$	neither	base
$H_3PO_4(aq)$	acid	acid
Ca(OH) ₂ (aq)	base	base
HCl(aq)	acid	acid
$H_3O^+(aq)$	acid	acid
$HC_2H_3O_2(aq)$	acid	acid
$H_2PO_4(aq)$	acid	both

6. (a) acid: $HNO_2(aq)$; base: $H_2O(l)$; conjugate acid: $H_3O^+(aq)$; conjugate base: $NO_2^-(aq)$ (b) acid: H_2O ; base: $NH_3(aq)$; conjugate acid: NH_4^+ ; conjugate base: OH^-

7. (a)
$$H_3PO_4(aq) + NH_3(aq) \Rightarrow H_2PO_4(aq) + NH_4(aq)$$

acid: $H_3PO_4(aq)$; base: $NH_3(aq)$; conjugate acid: $H_2PO_4^-(aq)$; conjugate base: $NH_4^+(aq)$ amphiprotic entity: $H_2PO_4^-(aq)$, NH_3

(b) $HCO_2H(aq) + CN^{-}(aq) \Rightarrow HCN(aq) + CHO_2^{-}(aq)$

acid: HCO₂H(aq); base: CN⁻(aq); conjugate acid: HCN(aq); conjugate base: CHO₂⁻(aq)

8. (a)
$$K_{a} = \frac{[H^{+}(aq)][F^{-}(aq)]}{[HF(aq)]}$$

(b) $K_{a} = \frac{[H^{+}(aq)][CO_{3}^{2-}(aq)]}{[HCO_{3}^{-}(aq)]}$

(c)
$$K_{a} = \frac{[H^{+}(aq)][C_{4}H_{7}O_{2}^{-}(aq)]}{[HC_{4}H_{7}O_{2}(aq)]}$$

9. (a) $HCO_2H(aq) + H_2O(l) \approx CHO_2^{-}(aq) + H_3O^{+}(aq)$ acid: $HCO_2H(aq)$; base: $H_2O(l)$; conjugate acid: $H_3O^{+}(aq)$; conjugate base: $CHO_2^{-}(aq)$

(b)
$$C_{17}H_{23}NO_3(aq) + H_2O(l) \Longrightarrow C_{17}H_{24}NO_3^+(aq) + OH^-(aq)$$

acid: H₂O(l); base: C₁₇H₂₃NO₃(aq); conjugate acid: C₁₇H₂₄NO₃⁺ (aq); conjugate base: OH⁻(aq)

(c) $HCO_3^{-}(s) + H_2O(l) \Longrightarrow H_2CO_3(aq) + OH^{-}(aq)$

acid: $H_2O(1)$; base: NaHCO₃(s); conjugate acid: $HCO_3^+(aq)$; conjugate base: $OH^-(aq)$ **10.** I disagree, because any substance that donates a proton can be considered a Brønsted– Lowry acid even if it does not form a hydronium ion.